

1



Abstract— This thesis intends to demonstrate an all-around

mastery of the lessons and skills developed through the Guildhall’s

software development track by building a competitive local

multiplayer, open-arena, two-dimensional twin-stick shooter from

the ground up. The artifact draws inspiration from Kirby Air

Ride’s “City Trial” and attempts to create a more competitive and

progression-focused game. AllStar demonstrates a holistic

understanding of video game programming, including gameplay

systems, engine coding, shaders and graphics programming, all

while emphasizing polish.

Index Terms— Game Development, Real-time Rendering,

Software performance, Software quality

I. INTRODUCTION

Mastery of programming for game development requires a

broad knowledge base covering a multitude of difficult and

varied skills. While much of the software development industry

requires more niche roles with less cross-pollination of

disciplines, gameplay and engine programmers must

understand everything from input and real-time rendering to

advanced data structures and networking. This thesis intends to

demonstrate a mastery of the lessons and skills developed

through the Guildhall’s software development track by building

a competitive multiplayer, open-arena, two-dimensional twin-

stick shooter from the ground up. The project aims to

demonstrate an all-around mastery by creating a well-polished

game, AllStar, in a custom C++ engine.

The artifact applies optimization techniques to create a

performant gameplay experience for up to four players. The

game pushes its engine’s codebase to its limits, and

demonstrates the extents of the author’s engine built from his

Guildhall experience. The game features split-screen local

multiplayer that pits players against one another in an arms race

to build the most powerful ship within a set time. Players

explore an open arena, destroying cargo crates and enemies to

earn upgrades to their ships. Upgrades affect the base stats of a

player’s ship, enabling her to go faster, tank more damage, or

shoot more powerfully. The player can hunt others in this game

mode to steal some of her opponent’s resources, and all player’s

Anthony Cloudy is with Southern Methodist University Guildhall, 5232

Tennyson Parkway, Building 2, Plano, Texas 75024 USA (e-mail:

acloudy@smu.edu). He graduated from Southern Methodist University in 2015
(B.A. Computer Science), and has previously done contract work with Fractal

Fox as a professional game developer.

Squirrel Eiserloh is a game programming faculty Lecturer at SMU
Guildhall, Southern Methodist University’s game development graduate

stats and equipment are locked in once time is up. The player

then must use her powered-up machine in three randomly-

chosen contests: including but not limited to a battle royale, a

race, or a coin-grabbing challenge. Because the contests are

chosen randomly, the player has no idea what kinds of

minigames she’s going to compete in, which adds to the frantic

and fast-paced nature of the game.

 The artifact was built using a public GitHub repository to log

all code commit messages, which helped discern what was done

when and kept progress transparent. A development diary was

kept not only to capture what challenges arose during

development, but to also document decisions and problems

resolved during the artifact’s creation. A concentric

development approach divided the game’s feature set into tiers,

defining clear stages for the project and creating milestones.

II. RESEARCH REVIEW

Because of the competitive nature of this artifact, this

literature review focuses primarily on finding resources on

competitive game design and creating multiplayer experiences.

This also includes research into specific challenges the artifact

faced, including split-screen game design and shoot-em-up

(shmup) design. Games that demonstrate a strong

competitive/multiplayer design are of equal importance to the

research, and provide proven examples of what works and what

does not. Other games are included in the research review for

their specific shmup qualities or control styles that provide

reference for the artifact’s design. The researcher consulted

professors Squirrel Eiserloh and Christopher Forseth from The

Guildhall at Southern Methodist University to find games with

mechanics, playstyle, and gameplay similar to the proposed

mastery project. The researcher then studied the suggested

games, including Galak-Z and Realm of the Mad God. The

researcher also utilized his personal games library to find more

similar games, such as Kirby Air Ride. Finally, the researcher

utilized Bing and the SMU Central Libraries to research

“Competitive Games”, “Competitive Game Design”, and

“Splitscreen Game Design” to find articles and research various

aspects of gameplay the artifact will utilize. The researcher

program. Since he graduated from Taylor University in 1996 (B.A. Physics) he

has been working as a professional game developer in the Dallas area,

contributing to over a dozen commercial game titles. He co-chairs the Dallas
chapter of the IGDA, and coordinates the Math for Game Programmers sessions

at the annual Game Developers Conference in San Francisco. (e-mail:

beiserloh@mail.smu.edu)

Creating a Competitive Multiplayer Open-Arena

2D Twin-Stick Shooter

Anthony Cloudy and Squirrel Eiserloh

2

limited search results and games only to those localized in

English.

A. Literature Review

In "Rock Paper Scissors - A Method for Competitive Game

Play Design", author Victor Chelaru discusses the nature of

Rock Paper Scissors (RPS) design in games, in which certain

attacks have an absolute advantage or tie with others (just like

the game the design’s namesake shares). The article goes in-

depth on the metagame of “Pure RPS”, where the attacks have

no lead up or predictability (grounded units vs flying units in an

RTS), “RPS and Signals”, where attacks do have readability

(such as the wind-up animation of a punch), and “RPS with

separate Attacks and Signals”, where attacks have signals, but

experienced players can cancel or feint signals. The article

reveals the emerging dominant strategies for RPS games, and

discusses ways to keep the game from incentivizing undesired

player behaviors. Because some dominant strategies include

“be random and fast” and “don’t initiate any attacks” for the

more basic RPS designs, ignoring the insight this article has

could destroy the metagame, and thus was considered for this

artifact. The dominant strategy that evolves from the most

advanced RPS design is to adapt to one’s opponent’s patterns,

which encourages a healthy, competitive game that prioritizes

player skill and reading one’s opponent without promoting stale

tactics [1].

The article “Shared-Multi-Split Screen Design” [sic] by

Richard Terrell assesses and compares the distinctive design

considerations and limitations provided by various types of

multiplayer screen layouts. The article exposes some of the

tradeoffs and design challenges that split-screen games face.

Split-screen gameplay can force a reduction in graphical

quality, as the game must render two to four separate views

every frame. The reduced screen space also can cause problems

for players, as this space conveys important spatial information.

Other design hurdles mentioned in the article include the

introduction of screen-peeking, a need for increased monitor

size to prevent feeling constrained, and increased team

communication if players want to cooperate. The article fails to

mention any positive aspects of split-screen as opposed to

multiple screen, which include cheaper setups, greater

flexibility when playing with other people, zero network

latency, and the potential for more positive experiences that

come from playing with others in person [2].

The postmortem for Good Robot provides valuable insight

into some of the unique design challenges shmups face. The

developer, Shamus Young, started the game as a solo project,

but eventually transitioned to work with another studio once he

realized that the game’s design had issues. The postmortem

outlines how he managed to resolve the game’s flaws by

working with the other team’s ideas, which included

establishing a dynamic gameplay rhythm, with valleys and

peaks of activity, and adding consequence to player death.

Many of Young’s concerns are pitfalls this thesis had to avoid

during development, especially in regards to game design and

mechanics not panning out or a lack of proper pacing. Failing

to give players the sense of enjoyable tension, or failing to

create meaningful and interesting player interactions can

endanger similar projects [3].

A paper titled “Group Report: Progression Systems” from

Project Horseshoe 2014 deconstructs the nature of progression

systems. The report broke progression systems down into a

series of building blocks that make up system fundamentals, as

well as tactics to strengthen player motivation towards

interacting with the systems. Of the system building blocks

described, the most relevant to this thesis include progression

loops, which spiral upward as players gain power in order to

accomplish new feats which grant them new powers. The power

up system, in which players continually make incremental

improvements on their ships, matches a power loop, where

playing the game improves the player’s avatar’s power, which

improves their “virtual skill” for the round. The paper also links

player motivations, such as superiority and control, to rewards

like competition and power, via progression atoms. Progression

atoms are in-game components that serve as the conversion

from the player’s motivations into rewards. By giving a player

who wants better control of their character a set of character

stats, they can give the player the reward of power through those

stats [4].

B. Field Review

Figure 1: Kirby Air Ride's City Trial mode features power-ups

scattered throughout the level that alter the characteristics of players’

machines [5].

Kirby Air Ride is a multiplayer 3D racing game created for

the Nintendo GameCube, which puts players head to head while

piloting a variety of quirky “Air Ride Machines”. The game

features an alternate game mode called “City Trial”, in which

players are put in an open map and given free roam for 5

minutes. Players begin on a basic, neutral Air Ride, and are

tasked with finding a better machine and collecting power-ups

to customize their machine within a time limit. At the end of the

round, all players compete in a random minigame that tests the

player’s skill and powered-up ride, with the winner of the

minigame winning the whole game. Although Terrell’s paper

describes many of the design limitations of split-screen, Kirby

Air Ride manages to utilize split-screen successfully to create

an enjoyable experience despite these limitations, and many of

the performance tradeoffs are either hidden by the game’s

design or minor incidents (such as a few occasional framerate

hiccups). The artifact for the thesis draws heavily upon City

3

Trial’s gameplay for inspiration, and aims to push the

boundaries of this original idea and take it to a new level. This

thesis attempts to utilize Kirby Air Ride’s unique gameplay

style that provides randomness without arbitrary outcomes,

while addressing the game’s minimal player interactions and

unwieldy combat [5].

Figure 2: Players battling monsters in Realm of the Mad God have to

pay extremely close attention to their surroundings, as bullets come in

various speeds and patterns that can end players’ lives instantly [6].

A fantasy bullet-hell with fast leveling and permadeath (the

game deletes a player’s character when they die), Realm of the

Mad God is an unconventional massively multiplayer online

game (MMO). Players are thrust onto an open world in which

they travel to defeat enemies, gain experience, and loot corpses

until all major bosses on the map have been vanquished. Once

the players have defeated the bosses, the whole server is thrust

into a battle with the game’s final boss. The game is a twin-stick

shooter, in which players avoid bullets while desperately trying

to land shots on the hordes of enemies. Realm of the Mad God’s

map and player versus environment (PvE) combat line up a

significant amount with the design of the thesis artifact.

Whereas players are incentivized to defeat enemies through the

chance of rare equipment upgrades in the MMO, the artifact

aims to use the power-up system to incrementally boost the

player’s stats. The artifact gives out a multitude of small power-

ups with few and far-between equipment pickups, instead of a

constant stream of class-specific equipment you may or may not

be able to use. Realm of the Mad God’s pickup and equipment

system is also important to the thesis, as players are inundated

with a steady supply of weapons, armor and potions at a rate

that matches the quick-paced nature of the game [6].

Figure 3: A player avoiding Sinistar while trying to create sinibombs.

The game’s open arena and obstacles match the thesis’ design [7].

Sinistar is a top-down, multi-directional shooter where the

player is locked in an arms race against “Sinistar”, the game’s

villain. While enemy workers attempt to reconstruct Sinistar,

the player attempts to survive gunfire and mine planetoids to

create “Sinibombs”, the only weapon that can defeat Sinistar.

Once Sinistar is created, the player needs either to destroy him

or run away, as getting caught by Sinistar results in instant

death. Sinistar provides an example of a PvE RPS balance that

shifts over time, as it requires players to juggle mining, direct

attacks, and evasive maneuvers to win against Sinistar [1]. The

act of mining leaves the player open to attacks from warriors,

but without sinibombs, players can only evade Sinistar, as his

attack trumps the player’s standard laser. The player’s options

change in value before and after Sinistar is activated, creating

gameplay dynamics that change over the course of the play

session. Sinistar has very similar theming, handling, enemies

and obstacles to those in AllStar. The act of shooting level

obstacles to acquire resources, the way the player navigates

through the level, and the tension felt during combat in Sinistar

match many of the thesis’ core mechanics. However, while

Sinistar generates tension via PvE, the artifact generates this

tension mostly via PvP, as the arms race is between players, not

an almighty boss [7].

4

Figure 4: Galak-Z's unique handling and polish set it apart from other

titles in the genre, creating the feel of actually driving a spaceship [8].

Galak-Z is an, 80’s sci-fi anime styled roguelike shmup that

casts players as a lone pilot fighting against enemies in

cavernous planetary dungeons. The gameplay combines

roguelike gameplay with shmup controls to create a unique

experience, as the player pilots a physics-based ship through

various “dungeon rooms”. The game also values stealth, as the

player’s rockets make noise that alert enemies to the player’s

presence. The game’s unique aesthetic and polish are high

quality, and while mostly out of scope for the constraints of the

thesis, served as a great reference to aspire and work towards.

Galak-Z’s ship controls are also intuitive, and the artifact aimed

toward a comfortable medium between the game’s physics-

based motion and Realm of the Mad God’s point-and-move

control scheme [8].

The majority of the games listed have some sort of RPS

gameplay, as outlined by Chelaru’s paper [1]. Kirby Air Ride

features jousting-based combat that utilizes RPS with separate

attacks and signals, as players must approach one another to

attack, and can easily feint an approach to sway their

opponent’s behavior [5]. Kirby Air Ride’s constant stream of

power ups grants the players more control, but the game fails to

provide progression systems for other common competitive

player motivations [4]. The flow and rhythm concerns that

arose during the development of Good Robot are an obstacle

some of these games overcame as well [3]. Although extremely

hectic, Realm of the Mad God manages to establish this rhythm

through the spacing of enemies in dungeons, and by giving the

players the ability to break out of tight situations via instant

teleport to a hub world [6]. Because players are able to lure and

stack multiple enemies to create hordes that would obliterate

the game’s flow via incredibly intense moments, giving the

player the option to take a break at any point prevents the game

from becoming overwhelming [6]. Galak-Z comes from the

other end of the spectrum, where the majority of gameplay isn’t

hectic, but tension and flow is generated through stealth and

using level obstacles to alleviate pressure.

C. Summary

This artifact aims to create interesting competitive

multiplayer gameplay while attempting to avoid the various

pitfalls and issues discovered through research. By utilizing

RPS with separate Attacks and Signals as a foundation for

designing player options and interactions, the artifact can avoid

stale or boring dominant strategies [1]. Without the separation

of attack and signal, the best course of action becomes never

initiating attacks, which detriments the game [1]. Although the

thesis intends to be competitive, the players should not always

be at each other’s throats, as mentioned in the postmortem for

Good Robot [3]. This thesis attempts to establish a good

gameplay rhythm by balancing player interaction with the

map’s scale, allowing players the choice to fight and the space

to run off and recover, without making the map too large for

players to find one another. While Kirby Air Ride creates an

interesting play space and encourages moments of interaction

through gameplay events, the game fails to incentivize combat

enough. Players must be extremely close to one another to

consistently battle, and with the scale of the map and handling

of the machines, the game fails to deliver an incredible PvP

experience [5]. This project attempts to combine Realm of the

Mad God and Galak-Z’s differing control styles to create the

best combat experience for the artifact. As mentioned in

Terrell’s article, split-screen has a host of downsides and

technical limitations that the artifact works to overcome [2].

Considering that optimization is a part of the mastery the thesis

intends to demonstrate, the project attempts to ensure that the

game runs well even with 4 players on screen. AllStar attempts

to combine the best parts of Kirby Air Ride and Sinistar with a

hybrid control scheme based off of Realm of the Mad God and

Galak-Z.

III. METHODOLOGY

The artifact is designed to demonstrate the author’s mastery

of the teachings and concepts taught in SMU Guildhall’s

programming track. The project demonstrates gameplay,

graphics, and engine programming, as well as the ability to

create procedurally generated content, optimize, and polish a

game through code.

A. The Game

AllStar is a competitive, open-arena, two-dimensional twin-

stick shooter that runs in a custom C++/OpenGL game engine.

The game is for two to four players and is controlled using one

to four Xbox/XInput controllers. The game has support for

keyboard/mouse and single player matches for the sole purpose

of debugging (which would be removed if this were a

commercial build). Each player flies their ship using the left

joystick, while aiming and firing their weapon with the right.

The left trigger activates any active abilities the player has,

while the right trigger teleports the player.

Game Flow

A game of AllStar lasts a total of 10-15 minutes. Players start

on the Player Join screen, where each can pick his or her ship

color and “ready up” for the game. Once all players are ready,

gameplay goes through two phases: Assembly and Challenge.

5

In the Assembly phase, each player flies around an open arena

and scavenges for upgrades to his or her ship. In the Challenge

phase, the player plays against her opponents through a trio of

minigames using her upgraded ship to fight for victory. After

finishing the final minigame and viewing the game’s overall

winner, players are returned to the title screen where they are

given the option to play again and try out new strategies and

combinations of upgrades.

Figure 5: A game of AllStar, featuring the two main phases of

gameplay, Assembly and Challenge.

Assembly

At the start of the Assembly phase, each player starts with a

default ship with no stat modifications, and is given five

minutes to assemble her ship. The player roams an open arena,

trying to find as many power-ups and equipment as she can to

build a ship that suits her style. Power-ups are pickups that

modify a player’s stats, while equipment are pickups that

change the player’s abilities, weapon, and base stats. The

specific combination of these pickups compose a player’s build:

the balance of skills based on boosts from equipment and

power-ups that describes how the player’s ship is most likely to

fare in various minigames. For instance, a defensive build

would have high defensive skills, but comparatively fewer

speed and attack skills, meaning the ship would have the

advantage in a battle, but have the disadvantage in a race.

Figure 6: The twelve power-ups, in their respective power families.

Power-Ups

Picking up a power-up increments one of the player’s twelve

passive skills, such as top speed or shield regeneration rate.

Power-ups are grouped into three families: speed, attack, and

defense. Each family has four power-ups that affect the player’s

stats in a related manner. The speed family includes: top speed,

which increases a player’s maximum velocity; braking, which

decreases the amount of time for a player to come to a complete

stop; handling, which reduces the time it takes for the player to

change her direction of motion; and acceleration, which

improves how quickly a player reaches maximum velocity. The

attack family includes: shield penetration, which increases a

player’s damage bonus when attacking shields; shot homing,

which increases degree to which shots home in on enemies; rate

of fire, which decreases the cooldown time between shots; and

finally damage, which increases the amount of damage each

projectile does to other entities. The defense family includes:

Hp, which increases a player’s maximum health; Shield

Capacity, which increases a player’s maximum shield health;

Shield Regeneration, which increases the rate of regeneration

of shield health outside of combat; and Shot Deflection, which

increases the degree to which shots are pushed away from the

player as they approach. Each player is trying to get as many of

these power-ups as she possibly can, as each power-up

improves her stats for the remainder of the game. A player can

find power-ups by breaking crates, destroying asteroids, or

defeating non-player enemies.

Equipment

Players are also on the lookout for equipment, which are

pickups that provide a player with new abilities, weapons, and

temporary stat bonuses cumulative with those gained by power-

ups. Each player has four swappable equipment slots, one for

each type of equipment: the active, a special ability that a player

activates using the left trigger; weapon, the projectiles the

player fires when shooting; passive, a gameplay-modifying

bonus or always-on ability; and chassis, which is the player’s

ship body. A player can find equipment by destroying any of

the crates scattered around the map, which has a chance of

containing any of the above equipment with the power-ups

dropped.

Chassis

The chassis is the foundation of a player’s build, as it has the

most impactful skill bonuses and drawbacks of all equipment.

For example, the speed chassis dramatically improves the

player’s top speed and acceleration, but reduces handling and

damage significantly, allowing the player to move quickly in

straight paths, but turn slowly in wide arcs.

Figure 7: Concept art for the different chassis in the game.

Weapons

Each weapon shoots different types of projectiles, and has a

large impact on how the player approaches enemies and other

6

players. Certain weapons like the missile launcher encourage

area control, while others like the wave gun encourage

precision and proper spacing, resulting in different optimal

strategies for each build.

Figure 8: The spreadshot weapon (right) encourages players to get in

as close as possible to blast enemies with as many shots as possible.

The wave gun (left) outranges the spreadshot, but encourages the

player to keep enemies at the focal point for optimal damage.

Passives

Passives are equipment that provide a gameplay change

passively, such as a player being able to cloak whenever her

ship isn’t moving. Picking up the Spray and Pray passive

encourages more area coverage with projectiles through

increased rate of fire at the cost of reduced damage per

projectile.

Actives

Actives are activatable equipment that give players new

abilities which grant a temporary edge over other players. These

abilities range from temporary power-up boosts – like

Quickshot’s large burst in rate of fire for 5 seconds – to more

custom actions, such as Boost’s ability to dash and deal damage

on contact with other entities.

Figure 9: A player using her active ability to drastically increase shot

deflection.

The Assembly arena is filled with major and minor

encounters – procedurally-generated landmarks, enemies, and

features that populate the world. Players can seek out

encounters that let them customize their builds towards

different goals, such as enemies or crates that drop speed power

ups. A player can also stumble upon environment landmarks,

such as detection-suppressing nebulae and teleporting

wormholes that create interesting strategical advantages and

disadvantages. If a player dies during the Assembly phase, her

chassis is destroyed. The dead player also drops a percentage of

her power-ups, and potentially one of her non-chassis

equipment pieces, which can be picked up by other players. The

defeated player is able to respawn immediately with the starter

chassis and resume the arms race with the power-ups and

equipment she has remaining.

Figure 10: A player taking advantage of a nebula to sneak up on an

enemy ship.

After the Assembly phase ends, players view a summary of

their power-up stats on a results screen, displaying what each of

them gathered. The players are then locked in to those power-

ups and equipment for the remainder of the game. After this

menu, the Challenge phase begins, and each player must

compete with her newly assembled ship for a chance at victory.

Figure 11: One of the minigame splash screens.

The Challenge phase of gameplay consists of three

minigames. This gameplay phase takes a player’s ship build and

challenges her skills on a variety of different factors. Since each

minigame is randomly selected, a three-minigame format helps

to prevent a player from losing the entire game due to minigame

selection (e.g. a slow, defensive build being subjected to a race).

Each minigame challenges the player in a variety of ways, from

battling to drag racing, from grabbing coins to a fight to the

death around a growing black hole.

Each minigame lasts no more than two minutes, and players

earn points based on their ranking in that game. The 1st place

player wins seven points, the 2nd earns four, 3rd gets two, and 4th

is awarded a single point. If any players are tied for a place, they

each receive the same points (two 1st place winners would both

7

get seven points, while the next player would get 3rd place’s two

points). The player with the most points at the end of the three

minigames wins. However, if at the end of the three minigames

two or more players are tied, a sudden death minigame is

played. This consists of a small, empty arena where the tied

combatants fight to determine the sole victor. If the sudden

death ends in another tie, the game runs sudden death

minigames until a single 1st place winner has been selected.

Figure 12: The sudden death minigame mode. If there's a tie for points

at the end of the game, the tied players are thrown into this minigame

for one final battle.

B. Program Structure & Techniques

AllStar utilizes inheritance to quickly and easily add new

entity interactions and gameplay functionality. TheGame class

manages the game’s state and carries players across the

different game modes. Each GameMode handles the game logic

(for Assembly or any one of the minigame modes) and updates

the entities in the game world. TheGame handles the transfer

between GameModes and results screens, and defers to each

GameMode to handle gameplay and player updating logic.

Everything spawned in the game world is an Entity, and uses

inheritance to share functionality.

GameModes

Each GameMode owns a world and is responsible for running

gameplay in the game. Subclasses of GameMode handle

creation and initialization of the world and entities, and keeps

them all within the map’s bounds while updating the camera

and other gameplay elements.

Figure 13: A UML Diagram that displays the core gameplay

architecture of the program.

Each GameMode handles the procedural generation of its

game world by populating the world with Entitys (props,

enemies, and players). Each GameMode handles and updates

all the entities in the game every frame.

SpriteGameRenderer

Each entity has a Sprite, which is automatically registered

with the SpriteGameRenderer, an engine subsystem that

handles the bulk of the game’s rendering. At program startup,

TheGame grabs all the game’s required textures and loads them

in as SpriteResources, each of which contains the base

information required to render a specific sprite. Whenever a

gameplay element requires a renderable component, it creates a

new Sprite object. Each Sprite references a SpriteResource

object registered in the engine’s ResourceDatabase, which

owns all preregistered assets. Creating a Sprite object

automatically registers it with the SpriteGameRenderer on a

rendering layer, after which it begins rendering automatically.

The destruction of the sprite object also removes it from the

rendering layer automatically. For a more detailed explanation,

please refer to the appendix.

Entities

The Entity base class contains the core functionality for

objects in the game world, which includes moving, taking and

receiving damage, calculating and resolving collisions, and

more. Ships, Projectiles, and Pickups each directly subclass

from Entity, each expanding on the functionality in a unique

way. Bullets fired by ships are Projectile objects, which

override collision detection functions to disappear after dealing

damage. Pickups are the physical representation of Items in the

world. Each pickup has its own item payload, which is

transferred to a player upon colliding with that pickup. Items on

their own can’t be rendered in the world, but once wrapped by

a Pickup, they gain a physical presence (a transform, and a

sprite).

A Ship is an entity that has a Pilot and can fire projectiles. A

Pilot is a class that contains the virtual input for a specific ship,

and moves the ship around. Ship subclasses include PlayerShip

and any individual Enemy ship classes, such as Grunt. Ships

differ from entities in that they have more complex movement

options, which are read from their Pilot. TheGame initializes

the PlayerPilots during the ship selection screen, based off

which controller (or keyboard, for debugging) the player is

using. TheGame creates an InputMap based on the player’s

input device and binds physical inputs to virtual inputs.

Whenever a ship wants to update its position, it polls the pilot’s

input map to find the direction in which the ship is moving, and

any other inputs needed to complete the update.

Figure 14: A UML Diagram that shows the relationship for entities

and items.

Procedurally generating the maps was chosen over designing

individual levels due to the programming-focused nature of the

8

thesis, and time constraints. The process starts by adding

anywhere from 50 to 100 asteroids to the map by randomly

picking spots inside the arena.

After filling the map with asteroids, the game determines a

set number of encounters, or map features, to be spawned in the

game. Each game mode picks how many encounters are in the

map, and can control the amount and types of encounters it

spawns. Types of encounters include: nebula, which cover up

part of the gameplay area in colorful clouds, obscuring players,

enemies, and items behind them; bossteroids – huge asteroids

that act as obstacles and a source of many smaller asteroids;

black holes, which suck entities into their center and destroy

them; and wormholes, which suck in entities towards their

centers, but spit them out harmlessly through another linked

wormhole on the map.

Figure 15: Players getting sucked into a wormhole. Once they reach

the center, they'll be shot out of the other corresponding wormhole on

the other end, which could be anywhere else in the map.

The game splits encounters into two groups, minor and major

encounters, based on the physical size and gameplay impact of

the encounter. For example, as a nebula is less gameplay-

impacting and more passive, it is a minor encounter and

spawned more frequently. Conversely, wormholes and black

holes take up much more play space and actively impact how

players play the game on a much larger scale, and are thus large

encounters and limited in the number of spawns they have in

the world.

Figure 16: The GameMode clears out any entities within the radius of

the encounter, which removes any asteroids that would be colliding

with this new encounter.

After selecting an encounter, the game generates a random

radius and attempts to spawn the encounter into the game. The

game spawns the major encounters first, then moves on to the

minor ones.

Figure 17: The encounter is spawned in.

Once the GameMode has selected a valid location for the

encounter that doesn’t collide with any other encounters, the

GameMode deletes any entities within the proposed

encounter’s radius. The process checks for collisions with any

of the entities on the game map, and removes anything that

could potentially interfere with the encounter. Finally, once the

area is cleared, the GameMode spawns in the encounter. Each

encounter object is coded using relative coordinates, which

allows the entities within an encounter to be placed in a regular

pattern based on the scale of the radius the cleared-out space.

Figure 18: A new encounter attempting to spawn in collides with a

previous and fails. A second attempt is made that collides with no

others, and succeeds.

Subsequent encounters are spawned in checking against all

the previous encounters’ boundaries. This step is to ensure that

no entities of another encounter are removed when clearing

space for a new encounter. In the figure above, an encounter’s

random location is too close to our previous encounter, forcing

the encounter to pick another location.

9

C. Development Process

 Game balance was a consistent struggle throughout the

project. A spreadsheet was created to iterate on and test

different power-up values, in order to simplify game balance

and better expose the function and dependency of the game’s

power ups. AllStar’s power-up stats range from 1 to 36

internally and from -5 to 30 externally (from the player’s

perspective). Initially, stats grew linearly, which proved

insufficient for balancing the project. Stats have an option of

multiple curves to create a better growth trajectory.

Figure 19: The potential stat growth curves for a stat.

The graph above shows the potential stat growth curves that

each of the skills could follow. While the skills started off

growing linearly, the level discrepancy grew quickly and

caused huge power gaps between players with 0 and 5-10

power-ups. Thus, geometric growth grew to be crucial for

helping to prevent early-game snowballing. Most of the skills

ended up following the Smooth Stop (ease out) trajectory, but a

few implemented Smooth Start (ease in) to prevent the major

effects from revealing themselves too early on. Fresh characters

start with stats at level 6, and after collecting the maximum

number of power-ups for a stat (20 power-ups) players reach

level 26. Equipment bonuses can push players up an additional

10 levels over the maximum stat, with level 36 as the absolute

max level.

Stat Level
Top

Speed Stat Level
Top

Speed

1 2.00 19 8.78

2 2.03 20 9.33

3 2.12 21 9.88

4 2.27 22 10.42

5 2.47 23 10.95

6 2.72 24 11.46

7 3.02 25 11.95

8 3.35 26 12.42

9 3.73 27 12.86

10 4.14 28 13.27

11 4.58 29 13.65

12 5.05 30 13.98

13 5.54 31 14.28

14 6.05 32 14.53

15 6.58 33 14.73

16 7.12 34 14.88

17 7.67 35 14.97

18 8.22 36 15.00

Control
Points

Stat Level
Top
Speed

 MIN 1 2.00

 MAX 36 15.00

Figure 20: A table that demonstrates the growth of a stat's value based

on the stat's level. The formula uses the min and max value for the stat

below, and interpolates across the two values to generate the growth

curve.

 Above is a table that calculates and displays the top speed

stat’s growth based on skill level. By entering a minimum and

maximum level at the bottom (the stat values for levels 1 and

36 respectively), the table auto-generates the band of values the

program comes up with using the blending function selected

from the stat growth curves.

 The final table in the spreadsheet applies the different stat

levels in a series of theoretical situations. The chart below pits

a character of mean level X versus a vanilla ship (all stats at

level 6) firing at point-blank range to determine best-case time

to kill the vanilla ship. By using this chart, stat data can be tested

without needing to play the game and test the values, which

sped up development and iteration on the stats considerably.

Figure 21: A graph from the information table that show how stats

manifest in-game. This table shows how long a player with particular

damage and rate of fire levels (X) would take to defeat and be defeated

by other players, such as a vanilla player or a player with maxed-out

stats (all stats at level 26).

The project employed concentric development to organize

the game’s components and features into discrete tiers. Each

tier built off the previous tier, and provided a clear path for the

project’s dependencies. The tiers also defined feature priorities

10

dividing them naturally into milestones. The “foundational” tier

consisted of mandatory engine features and bugfixes work to

be undertaken before beginning the project. The “stretch” tier

was considered optional, and comprised the stretch goals of the

project.

The “core gameplay” tier consisted of all core elements that

made up the game. These features focused on getting the game

functional first, proving out the core activity loop and gameplay

elements before moving on to polish tasks. This tier also

included multiplayer, player ships and rudimentary enemies,

the game’s basic power-ups, and a level in which to fly around.

The game flow through the Assembly and Challenge phases

was also implemented, along with start and end UI. Most of the

content wasn’t polished to final quality, but served as the

skeleton for the rest of the game’s features. This tier was similar

to a Proof of Concept Gameplay milestone, with an emphasis

on playability.

The “feel” tier focused on getting gameplay smooth and

polished. This tier was created to mitigate the risk of

overscoping up front and expending polish time, so that before

any secondary features and functionality were added, the game

already felt good. This established the minimum-viable product

for the game, and ensured that the project met the goal of

creating a complete game.

The “additional content and balance” tier’s tasks focused on

augmenting gameplay quality and replayability. This tier

introduced equipment, and added the remaining power-up

pickups and stats. Completion of the tier’s tasks added 4 more

minigames, as well as procedurally generated map zones during

the Assembly phase. These features were polished to match the

quality of the game after the “feel” tier was finished. Once these

tasks were completed, the project was in a state that

development could be stopped and the game still felt complete

and polished, ready for defense.

All remaining tasks and stretch goals were relegated to the

“stretch goals” tier, optional for completion. This tier included

features such as Assembly phase bosses and additional

minigames. The tier added new equipment variations, such as

new weapons and chassis types. This tier pushed the quality bar

and polish level of the game, and any remaining content post-

defense will be considered future work.

By applying concentric development, the project was not

only organized into discrete milestones with clear objectives

and deliverables, but was separated into a chain of

dependencies that prioritized its core components.

IV. POSTMORTEM

A significant amount of development time was spent

working towards the creation of highly-reusable engine

systems, with mixed results. Many of these subsystems were

attempted in order to expedite future work, but the payoff

wasn’t always within the project’s scope. The constant desire to

do things the “right way” in an attempt to further demonstrate

technical mastery wasted time that could have been put to better

use. Because of the somewhat nebulous goal of the project

(“demonstrate mastery”), it was easy to lose sight of short term

goals while pursuing perfection. After this mistake was made a

few times during the artifact’s creation, the developer retargeted

towards ensuring that the artifact was finished, as opposed to

creating a set of impressive subsystems and an unplayable

game. Instead, the game was created with workable systems and

some practical “work in progress” solutions. Since anything can

be refactored and reworked post-project, the game didn’t need

to be architecturally perfect; it just had to work and demonstrate

mastery.

For example, time was spent planning, designing, and trying

to implement a complex UI engine subsystem that worked

within and outside of the SpriteGameRenderer. However, this

proved to be a goal that wasn’t worth the amount of effort, in

respect to the timeframe of the thesis. In the end, all that was

essential was support for text and bar graphs inside the

SpriteGameRenderer itself, which was easier to implement,

served the immediate needs of the project, and ultimately

worked well enough to support the game. This problem helped

dispel the myth that only lofty, future-proofed systems are the

“right way” to solve engine problems for games. Programming

in a custom engine creates a temptation to solve problems the

game doesn't have yet. Time constraints help to prevent

indulging the temptation, as they force the developers to solve

the most urgent problems instead of tackling ones they don't

have. Good engineers spend the right amount of energy on the

right problems.

Conveyance was another major struggle during the project,

and ended up being one of the most important aspects of the

game (obvious perhaps in hindsight). Players need to be able to

understand the game, and any lazy shortcuts developers take

can negatively impact the player experience. For example, the

equipment system was confusing and unwieldy throughout

most of the project. Whenever players moved over a piece of

equipment, it was automatically picked up, causing them to

either wonder how they gathered the equipment or to ignore it

completely. This not only showed up as a complaint multiple

times throughout that period, but distracted from other issues

that needed feedback and wasted playtesting time. This

remained in the project as a to-do until less than a month out,

when it was replaced with a system in which players must hold

a button to pick up equipment. Solving the issue sooner (which

ended up being only a 5 minute fix) would have gathered better

player feedback and created a more positive gameplay

experience.

V. CONCLUSION

This thesis aims to demonstrate an all-around mastery of the

lessons and skills developed through the Guildhall’s software

development track by creating a well-polished game prototype.

By building a multiplayer competitive, open-arena, 2D twin-

stick shooter from the ground up, polishing and optimizing the

game, the artifact supports the thesis’ claim of mastery.

VI. FUTURE WORK

Despite the effort put into the artifact, AllStar remains a

project, not a product. Several areas of the game would need to

be addressed to bring it up to shippable quality. Art assets are

either from the public domain or from another artist who had

limited time to contribute to on the project. As such, most of the

game’s art style is not cohesive, and lacks the level of quality

and beauty an indie game would need to succeed on the market

today. The game’s design and balance require a few more

11

iterations as well. Because the project’s focus was on creating

content and systems to demonstrate mastery of the

programming track, less time was spent on the design and

balance necessary to bring the game to market. AllStar has

reached the stage of development where iteration and content

creation are much easier to do, which would help speed up

development for the remainder of the project.

VII. REFERENCES

[1] V. Chelaru, "Rock Paper Scissors - A Method for

Competitive Game Play Design," 23 January 2007.

[Online]. Available:

http://www.gamasutra.com/view/feature/130150/rock_pa

per_scissors__a_method_for_.php. [Accessed 8

September 2016].

[2] R. Terrell, "Shared-Multi-Split Screen Design," 17 June

2011. [Online]. Available:

http://www.gamasutra.com/blogs/RichardTerrell/201106

17/88846/SharedMultiSplit_Screen_Design.php.

[Accessed 8 September 2016].

[3] S. Young, "Good Robot Postmortem #2: Gameplay," 19

July 2016. [Online]. Available:

http://www.shamusyoung.com/twentysidedtale/?p=3334

3. [Accessed 8 September 2016].

[4] J. e. a. Hoffstein, "Group Report: Progression Systems,"

in Project Horseshoe, Comfort, 2014.

[5] Kirby Air Ride. (GameCube). JP: HAL Laboratory,

Nintendo, 2003.

[6] Realm of the Mad God. (Adobe Flash). USA: Wild

Shadow Studios, Deca Games, 2011.

[7] Sinistar. (Arcade). USA: Williams Electronics Inc.,

Williams Electronics Inc., 1982.

[8] Galak-Z: The Dimensional. (Microsoft Windows). JP:

17-BIT, 17-BIT, 2015.

VIII. FIGURES

Figure 1: Kirby Air Ride's City Trial mode features power-ups

scattered throughout the level that alter the characteristics of

players’ machines [5]. .. 2
Figure 2: Players battling monsters in Realm of the Mad God

have to pay extremely close attention to their surroundings, as

bullets come in various speeds and patterns that can end

players’ lives instantly [6]. .. 3
Figure 3: A player avoiding Sinistar while trying to create

sinibombs. The game’s open arena and obstacles match the

thesis’ design [7]. ... 3
Figure 4: Galak-Z's unique handling and polish set it apart

from other titles in the genre, creating the feel of actually

driving a spaceship [8]. .. 4
Figure 5: A game of AllStar, featuring the two main phases of

gameplay, Assembly and Challenge. 5

Figure 6: The twelve power-ups, in their respective power

families. ... 5
Figure 7: Concept art for the different chassis in the game...... 5
Figure 8: The spreadshot weapon (right) encourages players to

get in as close as possible to blast enemies with as many shots

as possible. The wave gun (left) outranges the spreadshot, but

encourages the player to keep enemies at the focal point for

optimal damage. ... 6
Figure 9: A player using her active ability to drastically

increase shot deflection. ... 6
Figure 10: A player taking advantage of a nebula to sneak up

on an enemy ship. .. 6
Figure 11: One of the minigame splash screens. 6
Figure 12: The sudden death minigame mode. If there's a tie

for points at the end of the game, the tied players are thrown

into this minigame for one final battle. 7
Figure 13: A UML Diagram that displays the core gameplay

architecture of the program. ... 7
Figure 14: A UML Diagram that shows the relationship for

entities and items. .. 7
Figure 16: Players getting sucked into a wormhole. Once they

reach the center, they'll be shot out of the other corresponding

wormhole on the other end, which could be anywhere else in

the map. .. 8
Figure 17: The GameMode clears out any entities within the

radius of the encounter, which removes any asteroids that

would be colliding with this new encounter. 8
Figure 18: The encounter is spawned in. 8
Figure 19: A new encounter attempting to spawn in collides

with a previous and fails. A second attempt is made that

collides with no others, and succeeds. 8
Figure 20: The potential stat growth curves for a stat. 9
Figure 21: A table that demonstrates the growth of a stat's

value based on the stat's level. The formula uses the min and

max value for the stat below, and interpolates across the two

values to generate the growth curve. .. 9
Figure 22: A graph from the information table that show how

stats manifest in-game. This table shows how long a player

with particular damage and rate of fire levels (X) would take

to defeat and be defeated by other players, such as a vanilla

player or a player with maxed-out stats (all stats at level 26). . 9

12

IX. APPENDIX: RENDERING PIPELINE & PROFILING

Overview

The SpriteGameRenderer renders various Sprites,

ParticleSystems, and other objects that extend the

Renderable2D class. The SpriteGameRenderer allows sprites

and other renderables to self-register to various SpriteLayers,

which each have an in-place linked list of all the

Renderable2Ds on that layer.

Figure 23: The header file for the Renderable2D class. The class

features previous and next pointers to make each renderable a node

in an in-place linked list.

Rendering

The render cycle starts with game code instantiating a

subclass of the Renderable2D class, which is an abstract class

that provides the interface for all renderable objects in the

scene. Each Renderable2D has the ability to register and

unregister itself from SpriteLayers, as well as update and

render functions. The interface also provides functions for

grabbing the renderable’s bounds and whether or not a

particular renderable is cullable or not, both of which are used

when determining what to draw onscreen.

Each of the inheriting classes of Renderable2D are for

drawing a new type of object. These classes include: Sprite,

which is used for rendering textured quads to the screen;

TextRenderable2D, which draws text with kerning support;

BarGraphRenderable2D, used for drawing bar graphs; and the

ParticleSystem, which renders particle emitters.

Figure 24: UML diagram of the Renderable2D class hierarchy. Any

subclasses of Renderable2D can be auto-registered to one of the

SpriteGameRenderer’s SpriteLayers.

SpriteLayers are classes that group together renderables via

an in-place linked list and render them per frame. Each

SpriteLayer is responsible for registering and unregistering

sprites, along with holding and applying any

FullScreenEffects, a container object for an FBO post-process

material, when rendering. The SpriteGameRenderer uses these

layers to determine the draw order for groups of objects in the

scene. Each layer also has a series of controls to toggle bloom,

change the layer’s virtual scale, or disable culling for that

layer.

 The SpriteGameRenderer draws all the layers for each of

the player viewports registered by the game class. When the

number of player viewports changes, the SpriteGameRenderer

divides up the screen into the required viewports and creates a

series of render targets for each. Since all the viewports are

equally sized for a multiplayer game, a pool of 4 textures is

created that will fit all the player’s views. Once this pool has

been created (or reused, if the state hasn’t changed), the

SpriteGameRenderer proceeds to draw a world view based off

the first camera. This render pass includes drawing all the

SpriteLayers, along with every registered Renderable2D

subclass in the in-place linked list for the layer. During each

layer’s render, all renderables are checked against the

camera’s viewport to determine which of the geometry can be

culled. All of it is drawn to the viewport-sized canvas,

including all FBO effects for that player. Once the player’s

render pass is complete, this render target is then copied onto

another full-screen-sized FBO in the appropriate place. The

SpriteGameRenderer then renders the remaining players to the

full-screen FBO, which then completes one more full-screen

effect pass, allowing for FullScreenEffects that span multiple

viewports. Once this step is completed, the whole FBO is

copied to the back buffer, and the render process begins again.

Bloom

 Because computer monitors have a fixed brightness per

pixel, we must fake this brightness via some other means. By

applying a Gaussian blur to any bright objects in our scene,

the objects will appear brighter within the constraints we have.

When rendering the game world, bright sprites (designated by

being added to bloom layers) are written out to a 2nd color

target when drawn. Then, the software applies a Gaussian blur

for several horizontal and vertical passes. The two-pass

approach is more efficient than doing both simultaneously, as

simultaneously blurring with a 32x32 kernel size takes 1024

samples/fragment versus 64 if done in two passes. Once the

2nd color target has been blurred, the SpriteGameRenderer

finishes the bloom effect by compositing that second target

with the first, creating a bright-looking laser or explosion.

Profiling

 Later into the artifact’s development, the author came

across a performance issue in the project. While it eventually

turned out to be something unrelated to the artifact causing the

framerate to drop, profiling not only helped to discover poor

rendering practice, but also improved performance on lower-

end machines. The developer generated a profiling report

based on the most expensive operations based on self-time, or

how long a subsection of code took minus the duration of its’

children.

Figure 25: A sample from the profiling report, sorted by the

respective self-time for each call.

13

 Although the most impactful on frame time was

RenderFromIBO, this segment was based on the number of

draw calls the game was making. What was unusual was the

MeshInit subsection, as it was taking up a large amount of

time comparatively to the rest of the program. Upon closer

inspection, this function was generating new render buffers (a

VBO and IBO) once every draw call. After a single use of

them, they would be discarded and regenerated for the next

call. This was addressed by only generating a new render

buffer if one didn’t exist, and to only destroy the buffers on

destruction of the mesh. After these changes were

implemented, Mesh Init fell from 0.81ms to 0.31ms, about a

60% reduction in frame cost.

 Another optimization attempted was regenerating the VAO

bindings whenever the program detected a change, instead of

for each draw call. The code was being called 177 times and

took 0.16ms, which was reduced to 88 calls and 0.12ms, a

25% reduction in frame time. While this ended up being a

relatively insignificant optimization, the refactor helped to

broaden the developer’s understanding of the rendering

pipeline.

